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THERMOPHORETIC MOTION OF AN ENSEMBLE OF MODERATELY COARSE 

AEROSOL PARTICLES 

M. A. Gaidukov, V. A. Kostruba, and A. V. Terzyan UDC 533.72+541.182 

Knowledge of the laws governing the behavior of an ensemble of aerosol particles in a 
nonisothermal gas makes it possible to increase the efficiency of many industrial opera- 
tions (production of powders, removal of valuable or hazardous by-products from the atmos- 
phere, etc.). Such knowledge can also be useful in developing both natural and artificial 
methods of influencing cloud formation and movement. The latter is important, for example, 
in the use of aerosols in agriculture. 

The solution of thermophoresis problems entails calculation of the relative motion of 
a nonuniformly heated gas and aerosol particles suspended in it. The principal assumption 
underlying the hydrodynamic method of calculation proposed in [i] is that the particles are 
distant from one another and can each be regarded as an individual particle located in an 
infinite gas. Gaidukov and Melekhov [2] and Yalamov et al. [3] used this method to develop 
an approach which makes it possible to study the thermophoretic motion of an arbitrary col- 
lection of solid aerosol particles located close enough to one another to allow their hydro- 
dynamic interaction. By hydrodynamic interaction, it is meant that the interaction is due 
to the fact that a particle moving in the medium generates a velocity field that affects 
the motion of other particles. By virtue of the assumptions made in the mathematical formu- 
lation of the problem, the results presented in [2, 3] are valid only for an ensemble con- 
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sisting of identical coarse (Kn ~ 0.05, Kn = X/R, where ~ is the mean free path of the gas 
molecules and R is the radius of the particles) and moderately heat-conducting particles. 

In the present study, we generalize the approach taken in [2, 3] to the case of moder- 
ately coarse and high-heat-conducting particles. We use a computer to calculate the behavior 
of linear ensembles on the basis of expressions obtained for the steady-state velocity of 
each particle. We also study the effect of polydispersity on the process of particle coars- 
ening. 

We make the following assumptions: the gaseous medium is at rest far from the parti- 
cles; the temperature of the medium is a linear function of position; the particles are solid 
and spherical (not necessarily of the same size) and are distributed randomly in space; at 
the initial moment of time, the particles have a steady velocity u (k) (k = i, 2, ..., N). 

The problem has two parts. First we need to find a correction for the thermophoretic 
velocity of a single moderately coarse aerosol particle. This correction depends on the pa- 
rameters h~k = Ra/~ak (where R~ is the radius of a particle with the number ~ and ~k is the 
distance between the centers of corresponding particles). In the second part of the problem, 
we need to calculate the trajectory of the particles. 

Estimates [4] show that within the practicable range of temperature gradients, the 
fields of velocity, pressure, and temperature of the gaseous medium (v, p, Te) are deter- 
mined by the quasisteady Stokes equations and the Laplace equation [4] 

hV 2 v = V  p , v v = O ;  ( 1 )  

v2T~ = O. ( 2 )  

On t h e  s u r f a c e  o f  e a c h  p a r t i c l e ,  t h e  m a c r o s c o p i c  p a r a m e t e r s  o f  t h e  medium s a t i s f y  t h e  f o l -  
l o w i n g  b o u n d a r y  c o n d i t i o n s  

Ve Kn(~ ) i o . a 
- -  -- sin Ok Te; v,.h = Cv ~hTeo sin O h O0 k 

v e 0 
v(o) ( I  + Kn(~)~) B~T~ ~ % T e + UOh ~ I~.TS 

(o) (h) c,~tf~ r~,~ II~h0h + TS PR r~ ~ 00~ 0r~ T~ - -  KTs,~,bKn ~ T~0h; 
+ - ~ ( h )  K(0)Kn(h)o v_J_ e d2 B~ ve 

c)Te OTh t O . 0 

• 77-% - -  • ~ = Cq• Kn(~) R h sin O h d0 h s i n  Oh-~o. Te:" 
Te - -  Tk = KT KnU~) Rh (OTJOrk) 

(3) 

(4) 

(5) 

(6) 

Here, KTS(~ c m are the thermal and isothermal slip coefficients of the gas along a plane 
surface; K T is a coefficient expressing the temperature jump at the plane surface; v e = De/ 
Pc; De, ~e, Pe are the viscosity, thermal conductivity, and mass density of the gas; K k is 
the thermal conductivity of the substance of the k-th particle; the quantities cv, 13R' , ~R, 

(k) 6b, Cq, entering into terms which are proportional to Kn and appear in boundary conditions 
(3)-(5) when allowance is made for the curvature of the surface and the Barnett contributions 
to the velocity distribution function of the gas molecules, are complex functions of the ac- 
commodation coefficients; rk, ek, and T~ is the spherical coordinate system connected with 
the k-th particle and having its origin at the center of the particle. We will use the ex- 
pressions obtained in [5] for cv, 6R', ~R, ~b, Cq. 

Knowing the solution of Eqs. (i), (2) with boundary conditions (3)-(6), we can deter- 
mine the total forces acting on each particle of the ensemble. Assuming the motion to be 

steady, we find the instantaneous velocities u(k) of the particles by equating the total 
forces to zero, while we find their trajectories by numerically integrating the equations 

dx~/dt  = u ~  ), dgh/dt = u ~  ), dzk/dt = u~ ~). ( 7 )  

By virtue of the linearity of the Stokes and Laplace euqations and boundary conditions 
(3)-(6), we represent the distributions of the microscopic parameters (v, p, Te) as 
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N N N 

v = ~ v(h)., p = ~ p(h), Te = T,o + (VTe)~ rh + ~ T~ ~). 
h = l  h = l  k = l  

( 8 )  

Here, v(k), p(k), Te(k) determine the perturbation of the corresponding field due to the k-th 

particle. We seek the perturbations v (k), p(k) in the form of the solution of the Lamb equa- 
tion [6] 

= (h) v(k) ~ {roth (rhx-,-1) -- (n- 2)/(2nen (2n -- i)).r~V~pk-~_~ 
n=l 

w ,T~(M 2 -- t ) ) ' r k p - n - J ,  p =  P~)~-I, *~ '~-n-1  + (n + t)/Obn (2n - -  (h) 

(9) 

while we seek Te(k) (and Tk) in the form of the general solution of the Laplace equation. 

In (9), p_n_l (k), r X_n_l (k) are spherical space harmonics of the order -(n + i) and 
are written in the spherical coordinate system of the k-th particle. 

The force acting on the k-th particle is determined from the formula [7] 

3 (h) 
F (k) = - -  4~ w (r~p_2). ( 10 ) 

The specific form of the harmonic p_2(k) is found by inserting the distributions of v, Te, 
and T k into (3)-(6). Here, after we satisfy the boundary conditions on the surface of the 
k-th particle, we must write the perturbations due to the remaining particles in the coordi- 
nate system of this particle. These transformations can be performed by means of well-known 
formulas [8] for systems consisting of just two particles. 

In the general case (N > 2), the specific expression for F (k) can be obtained on the 
basis of the present approach in the so-called two-particle approximation. Here, for a given 
particle, we consider its hydrodynamic interaction with each remaining particle separately. 
In this case, it can be shown that only terms of the order h~k n (where n = 0, 1 ..... 5) 
should be left in expansions of the macroparameters in the small parameter hak. This cir- 
cumstance also explains why we are not considering particle rotation in the present study. 
As was shown in the example of systems of two particles [2], the allowance can be made for 
particle rotation if the calculations are carried out to within terms of the order h~k 7, in- 
clusively. 

Proceeding on the basis of the procedures described above, to within terms of the order 
h~k 5, inclusively, we obtain specific expressions for the instantaneous ve].ocities of each 
of N particles: 

• [E) 
R h ]a2Ze +u k 

ux'(cO = % u~k)H k sin 2(z E ) 2~e + • 

z e ({ + 2cq Kn (h)) -- z h (i  -- K T Kn (/0) u(yu) 

Here, v0 (~) is the thermophoretic velocity of a single moderately coarse solid particle; 

H (cO 

c V ~4r 

~ + (~b + ~ . )  K n(~) --(1 + G~,~ I~(~)) ~ I~(~) 1 + ,72 K~ ~(~) 
"~TS 

-p 

(11) 
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E q u a t i o n s  ( l l )  a r e  w r i t t e n  in  a l a b o r a t o r y  c o o r d i n a t e  sy s t em in which  t h e  Oz a x i s  i s  d i r e c t e d  
a l o n g  t h e  l i n e  o f  c e n t e r s  o f  p a r t i c l e s  w i t h  t he  numbers a and k a t  t h e  a n g l e  ~ t o  t h e  v e c t o r  
(VTe)~, w h i l e  t h e  c o o r d i n a t e  p l a n e  Oxz i s  d i r e c t e d  p a r a l l e l  t o  i t .  

Us ing  (11)  and n u m e r i c a l l y  i n t e g r a t i n g  Eqs.  ( 7 ) ,  we s t u d i e d  t h e  b e h a v i o r  o f  an ensemble  
o f  30 m o d e r a t e l y  c o a r s e  a e r o s o l  p a r t i c l e s  l o c a t e d  e i t h e r  a l o n g  a s t r a i g h t  l i n e  ( l i n e a r  ensem- 
b l e )  o r  on one s u r f a c e  ( p l a n e  e n s e m b l e ) .  I n  o r d e r  t o  n u m e r i c a l l y  s o l v e  sy s t em (7)  on a B~SM- 
6 c o m p u t e r ,  we used  t h e  s t a n d a r d  a p p l i c a t i o n  package  STIFF [9]  t o  i n t e g r a t e  t h e  s y s t e m s  o f  
d i f f e r e n t i a l  e q u a t i o n s .  Use o f  t h i s  p a c k a g e  makes i t  p o s s i b l e  t o  s o l v e  bo th  s t i f f  and non-  
s t i f f  p r o b l e m s .  The i m p l i c i t  Adams method ,  w i t h  a v a r i a b l e  ( t o  12-20)  o r d e r ,  can be used  
t o  s o l v e  n o n s t i f f  p r o b l e m s .  S i n c e  STIFF i s  a o n e - s t e p  s u b r o u t i n e ,  a d r i v e r  and an e x e c u t i v e  
were written to control it. Having reduced computing time by one order allowed us to re- 
place the Jacobian used to calculate the corrector in the Newton integration process by a 
unit matrix for particles of the same radii and by a diagona I matrix for particles of dif- 
ferent radii. The computation was carried out with an accuracy of 10 -4 up to the moment of 
time T = t/n ~ 2500 (~ = R/u0, the choice of �9 being dictated by the condition ~(R/s 6 
0.i). 

The given program considers the possibility of there being a reduction in the total num- 
ber of particles in the ensemble as a result of the coalescence (or coarsening) of particles. 
Two particles with the numbers ~ and k which approach one another to within a distance on 
the order of 0.I max {R~, Rk} are considered to be one particle having the radius R~k = 

~R~ 3 + Rk 3 . 

To calculate results for specific points, we resorted to interpolation with the aid of 
a Taylor series. Without significantly affecting the accuracy of the results, use of the 
Taylor series allowed us to retain the integration step attained previously in the continu- 
ation of calculation. The results of the calculations were output on a graph plotter in the 
form of a set of lines representing the trajectories of the particles of the ensemble during 
the time T. These results are shown in Figs 1-6. 

Figures 1-3 show the dependence of the quantity 6 = u(k)/u0 (u(k) is the velocity of a 
doublet of two identical particles) on the distance between the particles s (Fig. i), on 
the ratio K~/K e (Fig. 2), and on the Knudsen number Kn (Fig. 3). 

Curves 1 pertain to the case when the line of centers of the particles comprising the 
doublet are parallel to the vector (VTe)~, while curves 2 pertain to the case when the line 
is perpendicular to the vector. 

Figures 4-6 show the results of numerical calculation of the motion of a chain of 30 
aerosol particles. It was assumed that the distance between the centers of any two adjacent 
particles in the chain was initially constant and that the particles were moving at a steady 
velocity. Figures 4-6 depict the dynamics of chains of identical particles (R k = 1 ~m, k = 
I, 2 .... 30), chains of three kinds of regularly spaced particles (R(I) = 1 ~m, R(2) = 3 

~m, R(3) = "i0 ~m), and chains of three kinds of randomly located particles (R(I) = 1 ~m, 
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R (2) = 3 ~m, R(3) = i0 pm). All of the results were obtained for Ka/K e = l0 and Kn = 0.3. 
The particle trajectories in Figs. 4-6 are plotted in a coordinate system connected with the 
center of mass of the particles. In Figs. 5 and 6, the discontinuity in the trajectory line 
of each particle corresponds to the coalescence of particles. An analysis of the results 
permits the following conclusions regarding the behavior of the given systems. 

i. In the motion of the particles along the line of centers, an increase in the dis- 
tance between particles is accompanied by a rapid decrease in hydrodynamic interaction (see 
Fig. i). Thus, at &12 = 3.086R and Kk/K e = 70, 6 = i.i. When the distance between particles 
is greater than 10R, the velocity of the doublet is nearly the same as the velocity of single 
particle. A similar pattern is seen with an increase in Kn (see curve l in Fig. 3). With 
the motion of a doublet along the line of centers, its velocity will be greater than the ve- 
locity of a single particle. The additional velocity here may reach 25-30% of the original 
value. With the motion of the particles perpendicular to the line of centers, 6 < I, i.e., 
the doublet moves more slowly than a single particle. Here, the dependence of 6 on ~z2 and 
Kn is the same as in the case of the motion of particles along the line of centers (see Figs. 
1 and 2, curves 2). 

If the line of centers of identical particles makes the angle ~ with the direction of 
(VTe)~, then drift of the doublet takes place, i.e., it moves in the direction perpendicular 
to (VTe)~. Meanwhile, drift velocity is maximal at ~ = ~/4. 

2. The configuration of a doublet consisting of particles of different radii changes 
over time. The position of the line of centers will be stable if the smaller particle trails 
the larger particle (~ = ~); the smaller particle moves faster than and overtakes the larger 
particle (the approach velocity is determined by the parameters hak and Kn). When the larger 
particle is moving behind the smaller particle (~ = 0), the position of the line of centers 
is unstable and small deviations of the line from ~ = 0 lead to a further increase in ~ and 
the realization of one of two cases: in the first case ~ ~ ~/2, s < s (s is the value 

of Cak at which particle interaction ceases), the angle ~ continues to increase while the 
distance between particles begins to decrease; in the second case ~ < ~/2, s > ~cr, parti- 

cles continue to move as single particles. It should be noted that here, as in the systems 
examined in Sec. i, interaction between the particles decreases with an increase in the num- 
ber Kn. 

3. For a unidimensional ensemble of identical moderately coarse spherical aerosol par- 
ticles (a chain) whose line of centers is parallel to the gradient (VTe)~ , motion takes place 
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along the gradient and the ensemble decomposes into isolated doublets and single particles 
(see Fig. 4). The shortest distance between particle surfaces (the smallest gap) is estab- 
lished in the leading doublet. Thus, the velocity of this doublet is maximal. For the other 
doublets, the size of the gap is greater, the farther the doublets are from the leading part 
of the chain, and their thermophoretic velocities decrease in the order corresponding to 
their location in the chain. The time over which the chain decomposes into isolated doublets 
and single particles, which undergo almost no interaction, is on the order of minutes for the 
given system of 30 particles, with R = 1 pm, s = 5R, and Kn = 0.03. Here, the size of the 
system (the distance between the outermost particles at the initial moment of the doublets 
at the final moment) increases threefold. 

4. If the ensembles examined in Sec. 3 consist of particles of different radii, then 
their behavior will differ significantly from the behavior of a chain of identical particles. 
Two situations can be realized in this case. In the first situation, particles of different 
radii form a regular system with a regularly repeating sequence of particles (see Fig. 5). 
In the second situation, particles of different radii are positioned at random in the chain 
(see Fig. 6). As an example of a linear regular system, we will examine a chain composed of 
three kinds of particles: R I = i0 pm, R m = 3 pm, R 3 = 1 pm. Such a system can be schemat- 
ically represented in the form RIRmR3RIR2R3...RIR2R s. Meanwhile, at the initial moment 
s = s = 3Ri, while Kk/< e = i0. The direction of (VTe)= was chosen so that thechain moved 
in the direction of the outermost particle with the radius RI. The radius of the numerical 
calculations showed that coarse particles or aggregates are formed in such a system over time 
(one particle is formed from three successively positioned particles with the radii RI, R 2, 
Rm). The process of aggregate formation is completed by the moment of time Tcr = 1 min. 
Beginning with this moment, the system behaves as a chain consisting of particles of identi- 
cal radii. It should be noted that the size of the system remains nearly constant in the 
given case. This happens because particles with the radius R I are initially located the dis- 
tance 12Ri apart, i.e., hydrodynamic interaction due to particles of this size has the great- 
est effect on the motion of adjacent particles in the system we are examining. 

In the case of an arbitrary distribution of particles with radii Rl, R2, R3 in the chain 
(see Fig. 6), the behavior of the latter is considerably more complex. In the final analysis, 
the formation of aggregates causes the initial system to break down into several subsystems - 
each of which is characterized by a tendency toward further particle coarsening. The number 
of subsystems and the number of particles in them at a certain fixed moment of time for the 
systems examined here depend on the initial location of particles in the chain. 
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The results obtained here - particularly those concerning the possibility of the forma- 
tion of particle aggregates in a nonisothermal aerosol - may prove useful in performing spe- 
cific calculations related to the dynamics of such systems. The results might also be used 
in the design and development of devices for removing aerosol particles from air. 
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THERMOCAPILLARY CONVECTION WITH TEMPERATURE-DEPENDENT HEAT RELEASE 

AT AN INTERFACE 

A. Yu. Gilev, A. A. Nepomnyashchii, and I. B. Simanovskii UDC 536.25 

It is known that thermocapillary instability in a system with an interface can be either 
monotonic or oscillatory in character [1-4]. The stability of the equilibrium state of the 
system is significantly influenced by presence of heat sources and sinks on the interface 
due to chemical reaction, evaporation, absorption of radiation, etc. The study [5] solved 
the problem of stability of equilibrium in a two-layer system against mononotonic perturba- 
tions under conditions of surface heat release. Nepomnyashchii and Simanovskii [6] examined 
the stability of a two-layer system against monotonic and oscillatory perturbations in the 
presence of temperature-independent heat release at the interface. 

In the present investigation, we solve the same problem with allowance for the tempera- 
ture dependence of surface heat release. It is shown that in certain cases this dependence 
can lead to expansion of the region associated with oscillatory instability. 

i. Let the space between two solid horizontal plates y = a I and y = -a 2, kept at con- 
stant temperatures T l and T z, be filled by two layers of viscous immiscible fluids. The x- 
axis is directed horizontally, while the y axis is directed vertically upward. We assume 
that thermocapillary convection occurs in the presence of gravity, which in turn allows us 
to consider the interface to be planar and nondeformable (y = 0). Despite this, the effect 
of buoyancy on convection is assumed to be negligible compared to the thermocapillary effect - 
as is seen for thin films of liquid. The absolute and kinematic viscosities, thermal con- 
ductivities, and diffusivities are equal to ~m, ~m, <m, Xm (m = 1 for the top fluid and m = 
2 for the bottom fluid). Surface tension is linearly dependent on temperature: o = o0 - aT. 
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